Macromolecular Crystallography **Breakout Session** Larry Shapiro, Lonny Berman, Vivian Stojanoff #### **Outline of the Session** Session Chair: Larry Shapiro Wayne Hendrickson "Challenges in Biological Crystallography" Paula Fitzgerald "Practical Experiences in Running a Shared Ownership Beam line" Elizabeth Duke "Macromolecular Crystallography and Diamond – Exciting Prospects with a Third Generation Source" Panel Discussion Moderator: LeemorJoshua-Tor Wayne Hendrickson, Paula Fitzgerald, Elizabeth Duke, Chris Lima, Larry Shapiro and Lonny Berman #### **Storage Ring Layout** | Building Areas | Area [SF] | | | | |---------------------------|-----------|--------|---------|--| | | First Flr | Second | Total | | | Office Block | 11,055 | 8,945 | 20,000 | | | Utility Corridor | 14,578 | | 14,578 | | | Accelerator Tunnel | 51,563 | | 51,563 | | | Experimental Floor | 111,230 | | 111,230 | | | Office/Lab | 64,173 | 64,173 | 128,346 | | | Linac Vault - Kly Gallery | 12,493 | 6,068 | 18,561 | | | | | | 344,278 | | **Medium Energy Storage Ring** → 3 GeV, 24 Fold TBA → ~ 10²¹ photons/sec/0.1%bw/mm²/mrad² → ~ 10¹⁶ photons/sec/0.1%bw → pulse length 11 psec (13x less then NSLS) → Flux and Brightness stable to <1%</p> #### **Full Energy Injection** Linac in this model Labs and Offices Near Beam lines Crane coverage over limited Assembly Area Labs & Common Areas Linac Below grade to use earth shielding 15 March 2004 #### **Proposed Bio-Molecular Crystallography Beam Lines** Operating Energy range: $\sim 3 - 30 \text{ KeV}$ Superconducting Undulators: U14 (5 m long and 14 mm period) Grazing incidence angle: 3mrad Si (111) double crystal monochromator Kirk-Baez mirrors: vertical demagnification 6 (2.5): 1 horizontal demagnification 7.75(2.8):1 #### **Suggested Modes of Operation** Challenging scientific questions,Virus, Membranes, Molecular Machines > User Access ★ Structural "-omics" ★ Drug-Development ## Performances of NSLS, APS, NSLS-II Beam lines | | NSLS | NSLS | APS | NSLS-II | |---|--------------------|----------------------|----------------------|----------------------| | | X25 | X29 | UA | U14 | | Monochromatic Flux @ 12KeV (ph/sec) | 3x10 ¹² | 3x10 ¹² | 1.5×10^{13} | 2.4x10 ¹⁴ | | Energy resolution w/ Si(111) (eV) | 12 | 4 | 1.8 | 1.8 | | Horizontal focus size (mm) | 0.7 | 0.25 | 0.06 | 0.075 | | Vertical focus size (mm) | 0.2 | 0.1 | 0.03 | 0.028 | | Monochromatic intensity (ph/sec/mm ²) | 2x10 ¹³ | 1.2x10 ¹⁴ | 8x10 ¹⁵ | 1.2x10 ¹⁷ | | Horizontal divergence at focus (mrad) | 1 | 1 | 0.35 | 0.22 | | Vertical divergence at focus (mrad) | 0.15 | 0.2 | 0.1 | 0.07 | | Time to 1/e crystal "death" (s) | 2500 | 420 | 6 | 0.4 | #### **Challenges** The high brightness and flux of the proposed machine and the short lifetime of the samples in such conditions pose new technical challenges Beam line requirements End station design Control and Automation **Detectors** Needs of a diverse User Community need to be addressed #### To address these requirements NSLS II beam lines will incorporate fully automated controls. The *goal* is an end – to – end characterization capability. This could be achieved with a two layer system in which the top (artificial intelligence) layer reasons symbolically with the monitoring and diagnostic sensors and the bottom layer (procedural control) translates them in a set of actuator adjustments Currently under development: automated sample changer artificial intelligence pattern recognition #### What we would like to hear your thoughts: ★Beam line issues: how many, mixture of ID and BM, optics ★End Stations: mixture of reconfigurable and fix setup stations detectors automation specialized instrumentation (spectroscopy, lasers, pressure cells, magnetic field, etc.) specialized support infrastructure (hazard levels, Lab space) ★User issues: support, training quality of life (housing, food facilities, transportation, etc) # The Machine | | NSLSII | NSLS | |---|------------|-----------| | Energy (GeV) | 3.0 | 2.8 | | Current (mA) | 500 | 280 | | RF Frequency (MHz) | 500 | 52.88 | | Emittance $(\varepsilon_x, \varepsilon_y)$ (nm) | 1.5, 0.008 | 78, 0.133 | | Beam size (σ_x, σ_y) (µm) | 83, 4.2 | 300, 6 | | Divergence (σ_x, σ_y) , (µrad) | 18, 1.8 | 260, 35 | | Bunch Length (rms) (psec) | 11 | 141 | | Circumference (m) | 620 | 170.1 | | Number of Insertion Devices | 21 | 6 | ## The Machine Electron Energy 3.0 GeV Current 500 mA Circumference 620 (m) Number of ID's > 20 Top off operation Superconducting small gap undulators Upgrade potential energy recovery linac 15 March 2004 #### Floor Layout